Session 4D: Legal IR

SIGIR 21, July 11-15, 2021, Virtual Event, Canada

Legal Judgment Prediction via Relational Learning

Qian Dong
donggian19@mails.ucas.ac.cn
Institute of Software, Chinese Academy of Sciences &
University of Chinese Academy of Sciences
Beijing, China

ABSTRACT

Given a legal case and all law articles, Legal Judgment Prediction
(LJP) is to predict the case’s violated articles, charges and term of
penalty. Naturally, these labels are entangled among different tasks
and within a task. For example, each charge is only logically or se-
mantically related to some fixed articles. Ignoring these constraints,
LJP methods would predict unreliable results. To solve this problem,
we first formalize LJP as a node classification problem over a global
consistency graph derived from the training set. In terms of node
encoder, we utilize a masked transformer network to obtain case
aware node representations consistent among tasks and discrimi-
native within a task. In terms of node classifier, each node’s label
distribution is dependent on its neighbors’ in this graph to achieve
local consistency by relational learning. Both the node encoder and
classifier are optimized by variational EM. Finally, we propose a
novel measure to evaluate self-consistency of classification results.
Experimental results on two benchmark datasets demonstrate that
the F1 improvement of our method is about 4.8% compared with
SOTA methods.

CCS CONCEPTS

» Applied computing — Law; « Computing methodologies —
Supervised learning by classification; Structured outputs.

KEYWORDS

Statistical Relational Learning; Natural Language Processing; Legal
Judgement Prediction

ACM Reference Format:

Qian Dong and Shuzi Niu. 2021. Legal Judgment Prediction via Relational
Learning. In Proceedings of the 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR 21), July 11-15,
2021, Virtual Event, Canada. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3404835.3462931

1 INTRODUCTION

Recent artificial intelligence techniques make legal assistant sys-
tems popular, which aim to provide handy consulting services at

“Corresponding author

(c0) @

This work is licensed under a Creative Commons Attribution International 4.0
License.

SIGIR 21, July 11-15, 2021, Virtual Event, Canada
© 2021 Copyright is held by the owner/author(s).
ACM ISBN 978-1-4503-8037-9/21/07.
https://doi.org/10.1145/3404835.3462931

983

Shuzi Niu*
shuzi@iscas.ac.cn
Institute of Software, Chinese Academy of Sciences
Beijing, China

aband.

Charge abuse

Article

0,1]

year

(1,2]

years

(2,3]

years

(3,4]

years

(4,5]

years

(,6]

years

(6,7]

years

Term

Figure 1: Illustration of Small Knowledge Graph dealing
with Article 261! and 2607.

a low cost for both professionals and non-professionals. Key to
these systems, Legal Judgment Prediction (LJP) focuses on automat-
ically deciding a legal case’s judgment results based on law articles
and fact descriptions. LJP is non-trivial due to complex structure
of judgment results including violated articles, charges and terms.
Some studies solve LJP within a multi-task learning framework
by transferring representations from different tasks and introduc-
ing topological task dependencies into judgment predictor. Others
focus on few-shot and confusing labels within only one task.

Complicated judgment results intrinsically lie in perplexing class
label relations. Fig. 1 only describes a subgraph of such relations.
Generally there are two kinds of relations: one is within a task, the
other is among different tasks. For example, crime of abandonment
from charge prediction task and Article 261 from article prediction
task are related. Perplexing relations pose two challenges to LJP
methods.

Self-consistency Challenge. Distinguished from topological
task dependency, semantic or logical label relations of different
judgment kinds naturally exist. For example in Fig. 1, article 261 is
only related to charge “Crime of Abandonment”. If a model predicts
that article 261 holds, then it will be expected to output charge
“Crime of Abandonment”. The term mentioned in article 261 is no
more than 5 years, which means that article 261 is related to first 5
term interval labels. If the predicted article label is 261, the predicted
term is expected to be among these 5 labels. Existing methods have
no guarantee of satisfying these constraints and logically conflicting
judgment results may be obtained. This poses a self-consistency
challenge to LJP approaches.

1 Article 261: [] Whoever refuses to fulfill his duty to support
an aged person, minor, sick person or any other person who cannot live independently,
if the circumstances are flagrant, shall be sentenced to fixed-term imprisonment of

, criminal detention or public surveillance.
2 Article 260: [] Whoever maltreats a member of his family, if the
circumstances are flagrant, shall be sentenced to fixed-term imprisonment of

https://doi.org/10.1145/3404835.3462931
https://doi.org/10.1145/3404835.3462931
https://creativecommons.org/licenses/by/4.0/

Session 4D: Legal IR

Discriminative Representation Challenge. Confusing label
relations within a task are common in legal judgment results, such
as Crime of Abandonment and Crime of Abuse in Fig. 1, which are
difficult to classify and widely studied in [7]. Confusing label rela-
tions are only a special kind of label dependency within a task. Here
we focus on all possible label relations within a task to ensure they
are discriminative enough in a multi-task learning framework. This
poses a discriminative representation challenge to LJP approaches.

To tackle above challenges, we formalize the LJP task as a graph
node classification problem. Naturally in the training set, a global
consistency graph is composed of all possible class labels as graph
nodes and two labels from different tasks co-occur in more than one
case as an edge. Here legal judgment results include violated articles,
charges and terms, and the derived graph is tripartite. Graph node
classification is to find relevant nodes for each legal case in the
global consistency graph. Then we introduce Relational learning
into Transformer network to solve the graph node classification
problem in terms of node representation learning and classification
modules, referred to as R-former.

For the node encoder module, we design masking mechanism
for transformer network to derive case aware node representation
under the supervision of global consistency graph. Specifically, We
use the summation of the derived case representation from vanilla
transformer and each initialized node embedding as input. They are
fed into a transformer with two cascaded masking matrices derived
from the global consistency graph. The first matrix distillates pair-
wise information to learn global consistency representations among
different tasks, which are further filtered by the second matrix to re-
fine pairwise interactions to obtain discriminative representations
within a task.

For the node classification module, we employ label propagation
through Graph Convolution Network [10], to obtain the relevance
score of each node according to its neighbors in this consistency
graph for the sake of local consistency. However, exactly inferring
the posterior joint relevance label distribution of all nodes is usu-
ally infeasible due to complicated relations in this tripartite graph.
Therefore, we approximate it with a variational distribution by
mean field method[18].

Finally, we optimize the evidence lower bound (ELBO) of the
log-likelihood function of this posterior distribution within a varia-
tional EM framework in light of GMNN [19]. Experimental results
on two public benchmark datasets show that our proposed method
R-former outperforms state-of-the-art baselines by about 4.8%. Ab-
lation studies suggest that both node encoder for global consistency
and node classifier for local consistency are essential for the per-
formance improvement.

Our major contributions are listed as follows. (1) We define a
global consistency graph derived from the training set, and formal-
ize LJP task as a graph node classification problem. (2) Case aware
node representations, which are consistent among different tasks
and discriminative within a task, are learned through the masked
transformer network based on this global consistency graph. (3) To

than two years, criminal detention or public surveillance Whoever commits the crime
mentioned in the preceding paragraph and causes serious injury or death to the victim
shall be sentenced to fixed-term imprisonment of but

I The implementation has been released at https://github.com/DQ0408/R-former.

984

SIGIR 21, July 11-15, 2021, Virtual Event, Canada

achieve local consistency in the node classifier, we perform label
propagation over this global consistency graph by graph neural
network to estimate the posterior relevance label distribution. (4)
Self-consistency measures are proposed to evaluate the consistency
of classification results from different tasks.

2 RELATED WORK

Here we briefly describe existing LJP methods and other related
techniques, i.e. Transformer, Graph Neural Network and statistical
relational learning.

2.1 Legal Judgment Prediction Approaches

Legal judgment results are usually composed of related law articles,
charges, terms and so on. The complex constituents of judgment
results make Legal Judgment Prediction (LJP) task different from
text classification or matching task. Some studies attempt to solve
several tasks simultaneously, such as article, charge and term pre-
diction tasks, while others focus only one of them.

Single Task Learning Method. Single judgment prediction
task is often solved by text classification or matching model [31].
Early methods[13] use handcrafted features for charge prediction.
Recent single task methods often attempt to solve few-shot and
confusing label problems. Few-Shot [7] manually design several
discriminative charge attributes as relational features for fact de-
scriptions and charges, which provide effective information for both
few-shot and confusing charges. Dynamic pairwise attention [27]
utilizes pairwise attention to alleviate few-shot article problem and
adopts dynamic threshold techniques to be adaptable to different
article labels. An end-to-end memory network [21] is utilized to
perform the charge prediction with the help of law article encoder.
Sequence Enhanced Capsule model [6] utilizes a seq-caps layer and
an attention residual unit for charge prediction and is optimized
with focal loss to relieve few-shot charge problem.

Multi-Task Learning Framework. Multi-task learning meth-
ods focus on task dependency among charge, article and term pre-
diction tasks. Most studies care for transferable representation
learning among tasks, which is usually implemented as param-
eter sharing. FLA [14] solves charge prediction problem by text
matching between cases and relevant articles with a supervised
attention module, and optimizes charge and article prediction task
jointly. LADAN [29] derives differences between confusing law
articles by graph neural network to enhance the representation
of fact description. Some other studies attempt to model the task
dependency in the prediction stage. TopJudge [34] is an effective
multi-task learning framework to model topological dependencies
among subtasks with directed acyclic graphs. HMN [26] takes ad-
vantage of the hierarchical structure between charges and articles
to make a correct decision. Yang et al. [30] further add backward
dependencies between the prediction results of subtasks to this
topological framework.

2.2 Other Related Techniques

Transformer architecture achieves great success in NLP tasks.
Its self-attention mechanism expands the sequential dependency
of RNN to the global dependency of each token in the input se-
quence on every other token in the sequence [33]. However, the

Session 4D: Legal IR

quadratic dependency on the sequence length leads to high memory
requirement, which hinders these models from capturing longer
context. To solve this problem, Transformer-XL [4] divides the long
sequence into some overlapped subsequences and introduces rela-
tive position embedding. Sparse attention mechanisms are common
methods to break down the full attention matrix [1, 33].

Graph neural network (GNN) has recently been widely stud-
ied in various areas for its ability of capturing high-order rela-
tions. It helps learn useful representations for graph node clas-
sification [3, 5, 9, 23]. The key information propagation step of
GNN is to collect neighbor information to update the current node
information, which encode the local graph structure and node rep-
resentations. Graph Convolution Network (GCN) adopts convolu-
tion operator over the graph for information propagation, which
is supposed to be effective for node classification [10]. Moreover,
attention mechanism is applied to graph neural network to focus
on important nodes and significant information of these nodes to
improve the signal-to-noise ratio of the original data [24]. Recursive
based GNN [12] attempts to use the gate mechanism like GRU [2]
in the propagation step to improve the long-term propagation of
information across the graph structure.

Relational Learning methods focus on modeling the joint dis-
tribution over relational data in face of the uncertainty and complex
structure in real-world data [8, 11]. It does well with relational data
without independent assumption. Statistical relational learning
methods for relational data classification mainly model label depen-
dency with probabilistic graphical models. Many methods adopt
markov networks, such as conditional random fields [25], for rela-
tional data classification, including relational Markov networks [22]
and Markov Logic networks [20]. With the development of deep
learning, more and more studies focus on learning good represen-
tations for relational data. Neural Markov Logic Networks [16] and
Graph Markov Neural Network [19] are two state-of-the-art meth-
ods to emphasize the representation learning. However, GMNN also
concerns of the inference/prediction model with the help of label
dependency. Exact inference over the posterior label distribution
in probabilistic graphical models is challenging due to complex
relational structure. Approximate inference methods are usually
introduced, such as mean field methods [18] and belief propaga-
tion [32].

3 PROBLEM FORMALIZATION

The law article set is A = {al, o Amy } where my is the num-
ber of law articles. The training legal case set is denoted as 7~ =
{(x1,yi) }}=;, n is the number of legal cases. x; is the textual fact de-
scription and ground truth judgment results include three kinds of
judgment labels, i.e. y; = {y{ }]T:r Here LJP aims at predicting each
case’s violated articles, charges and terms of penalty, so the number
of tasks T = 3. Relevant articles of case ¢; is y} € {0, 1}™. Charges
of case c; are represented by yl? € {0,1}"™2, my is the number of
charges, e.g crime of intentional injury”, in this law article set. All
the possible terms of penalty in this law article set are divided into
ms3 term intervals. Terms of case c; is y? € {0,1}™s,

Some existing LJP approaches suppose article, charge, and term
prediction tasks are independent, thus the predicted joint distribu-
tion of all tasks for case c; is factorized as Eq.(1). y; is denoted as

985

SIGIR 21, July 11-15, 2021, Virtual Event, Canada

predicted labels of all tasks for case c;.
3 my '
pGitx) =[] | P& (0)1x)

j=1k=1

(1)

Several studies model the task dependency in a Directed Acyclic
Graph (DAG). Thus the predicted joint distribution of all tasks for
case c; is derived as Eq.(2), where the prediction results of each task
Jj will be conditioned on the fact representation x; and outputs of
all its dependent tasks Dj.

3 my .
pGikx) = [[[PG O F1hien,)

j=1k=1

()

Different from task dependency in DAG, there naturally exist
logic or semantic relations between different kinds of class labels.
Here we model these relations derived from the training set with a
tripartite graph G as Def. 3.1. Each class label is corresponding to a
node in G. There are three kinds of nodes m = |V| = Z:}:l mj. All
three kinds of nodes are treated equally, so we omit task subscripts.
Thus for the fact description of each case x; in the training set, its
ground truth labels are y; = (y}, y?,y?) € {0, 1}, which means
whether nodes are relevant to the case.

Definition 3.1. Global Consistency Graph Global Consistency
Graph G = (V, &) is a tripartite graph with all class labels as nodes
V= {Uk}km:r For each case in the training set {(x;,yi)}}-,, there
is a tripartite subgraph G; = (V;, &;). It is derived from ground
truth labels y; as follows:

Vi ={oxlyilk)=1k=1,...,m}
& = {(Ukl’vkz) | Uky> Uk, € Vik1 <my <k
ormy < ki <my+my <ka}

Thus the edge set in global consistency graph G is computed as
E=U"_&;.
i=1%1

LJP task is reduced to a graph node classification problem over
this consistency graph G for each case. We employ statistical re-
lation learning to incorporate this label dependency in G into the
classifier. Specifically the predicted joint relevance label distribution
through conditional random field [25] is computed as Eq.(3), where
¢(-) is the potential function and Z(-) is the partition function.

[1 ¢Gih.5:it.xix9) @)

(vj,0r) €8

r¥ilxi, G) = Z0ax7)

4 R-FORMER

To decrease contradictory predicted judgment results, we introduce
the Relational learning idea into transformer backbone model
to achieve global and local consistency, referred to as R-former.
For the sake of global consistency, we design masking matrices
based on G, and refine node representations with masked self-
attention, which are consistent among different tasks and discrimi-
native within a task. To capture the local consistency, we predict
the relevance label of one node according to its neighbors like con-
ditional random field as py in Eq.(3). However, exact inference of
pg is intractable due to complex relations of G. So we estimate
a surrogate distribution gy by mean field approximation method
and optimize it within a variational EM framework. Finally, we
introduce self-consistency evaluation measures.

Session 4D: Legal IR

E-step: Node Retrieval by estimating pg and update gy according to current py

+O+ Consisteney Distillatior E
‘.+ ® article
+0+ ®
+ g ®
+@9) = — D PO e
g E]
g @ | [®
£ +@ |* O ®
- ®
®

+
+ Distinction] Distillation

e Seg Node

Label Propagation by GCN ¢

Node Encoder by Masked Transformer
L _ 2
M-step: Learned Representation by estimating g and update py according to current g

Figure 2: R-former Architecture

4.1 Architecture

As shown in Fig. 2, R-former is mainly made up of two modules: (1)
Node Encoder module; (2) Node classification module. In light of
GMNN [19], we alternatively optimize both modules in a variational
EM framework: (1) E-step: infer relevance label distributions over
G with py and optimize the joint label distribution of gy to update
0; (2) M-step: predict relevance labels for each case with gy and
optimize the conditional distribution p based on predicted results
to update ¢.

Node encoder module is composed of two transformer blocks.
The first is to obtain article representations from raw text. The sec-
ond is used to distill consistency information among different tasks
and distinction information of the same task by masking mecha-
nisms, namely Consistency Distillation and Distinction Distillation
separately in Fig. 2. All parameters in this module is denoted as 6.
We obtain node representations by computing gy at M-step and
learn this model parameter 8 by maximizing the log-likelihood
function of joint relevance label distribution at E-step.

The core of node classification module lies in the joint distri-
bution p(¥;|x;, G) in Eq.(3), which is simplified by a conditional
distribution p(y;ly:(N), xi, G) due to the independence assump-
tion for graph G. N is the corresponding neighbor set of each node
in G. Furthermore we parameterize this conditional distribution as
a graph convolution neural network denoted as py (yily: (NV). xi, G)
due to its non-linear modeling capability of label dependency. There-
fore, graph convolution network is the core of node classification
module in Fig. 2. We infer the relevance label distribution over
G for each case with py at E-step and learn ¢ by optimizing the
log-likelihood of this conditional distribution at M-step.

4.2 Node Encoder Module

Taking the textual fact description x; of each case c; as input to the
first vanilla transformer, we obtain the representation of the first
token [cls] as the case representation denoted as Q; € R4 The
node sequence v1,...,0g,...,0m, 0 € YV, is fed into the second
transformer, i.e. distillation block in Fig. 2, with segment tokens
representing each task, i.e. [article], [charge] and [term]. Case aware
node representations E(l.) € R™*4 gre initialized as Eq.(4), where I
and Iiype(y,) are denoted as the randomly initialized embedding of
vy and its segment token type(vy) respectively. d is the dimension
of latent representations.

E?(k) =Qi+ Itype(vk) + I 4

986

SIGIR 21, July 11-15, 2021, Virtual Event, Canada

Distillation block in Fig. 2 is intrinsically L masked transformer
layers. For the I-th layer, it first refine consistency information from
current node representations according to consistency graph G,
referred to as consistency distillation mechanism. To achieve this
goal, we design the masking matrix M. according to G as Eq.(5)
and the corresponding illustration is shown in Fig. 3(a). Through
the refinement by M, the masked self-attention matrix is updated
as Eq.(6) to emphasize the similarity of representation between
neighbor nodes in G. € is small enough.

1 (Z)j,l)k) €&
Mc(j k) =491 j=k (5)
0 otherwise
. (W EY) (W ELLY
A; = softmax(L L +e(1-M)) (6)
Vd
Hi(k) = B (k) +) ALk DE () ()

J

To make node representations consistent among different tasks
with G, we update node representations Hf through masked self-
attention according to Eq.(7). Each node updates its representation
through its neighbor representations according to the masking ma-
trix Mc. For example, Article 292 is only related to the crime of
assault, intentional injury, and intentional homicide. Through this
tripartite masking, the model can update article node representation
by its related charge node representations. Node representations
without this masking mechanism would are clustered into differ-
ent tasks, where node distances within a task are smaller than
among different tasks. This tripartite masking mechanism attempts
to zoom in related node distances among different tasks, which
indirectly makes node distances within a task small enough to keep
its clustered effect.

(a) M (b) Mg

Figure 3: (a) is the tripartite masking matrix. (b) is the mask-
ing matrix for distinction distillation. The value of the white
area is 0.

To learn discriminative node representations of the same task in
the I-th layer, we further introduce a distinction distillation mech-
anism after the consistency distillation mechanism. We design a
masking matrix My as Eq.(8) to depict label relations of the same
task as Fig. 3(b). Pairwise similarity within each node cluster is cal-
culated through masked self-attention mechanism as Eq.(9). Based
on the pairwise similarity, similar representations are derived for
nodes of the same task. Subtracting the similar representation from
the learned representation Hf with consistency distillation will help

Session 4D: Legal IR

obtain a distinguishable representation as Eq.(10). This distinction
distillation mechanism will pull node representations of the same
task apart from each other.

1 A4
Al = soﬂmax(% +e(1-My) (9
B} (k) = WoH{ (k) - " Al(k,)HHi()) (10)

J

After distillation block, node encoder obtains all case aware
representations {Ef}{“zl over G given case ¢;. By mean field ap-
proximation method [18], relevance labels of all nodes are pre-
dicted through a sigmoid classifier with qg in Eq.(11), where 6 =
{(We, Wy, W, Wl

90(ilxi. G) = o(WfE}) (11)

Considering the uncertainty of the derivation from classification
labels to relevance labels, we treat neighbors of relevant nodes in G,
whose derived labels are 0, as uncertain nodes. Thus for each case
ci, its uncertain node set is denoted as U; = {vg|yi(j) = Lyi(k) =
0, (vj,0x) € E}. Due to these unreliable labels, we split the loss
functions into two parts: L, for C; =V — U;, L, for U;. For nodes
with precise labels, L. is defined as the cross entropy between
the true label distribution and the predicted distribution in Eq.(12).
For nodes with uncertain labels, we approximate the true label
distribution with py and the cross entropy loss between py and
qq is derived as Eq.(13). To differentiate predicted results from two
modules, we denote §; predicted by g and y; predicted by py.

L(T.0) == D" By llogqo(3i(i)Ixi, 6)] (12)
i=1 Z)jECi
Lu(7,0) = —Z Z Epy (5: (1) 15:(N;),6) 10840 (Fi())Ixi. G)]
i=1 UjEUi
(13)

4.3 Node Classifier Module

Node classifier module is to predict the relevance label distribution
over G given a case c;. Due to the complicated relational struc-
tures in this consistency graph, exactly inferring the joint posterior
relevance label distribution of all nodes is intractable as Eq.(3). In
fact, there is no need to estimate the joint distribution, because
the conditional distribution is informative enough for label depen-
dency in G, such as p(y;(j)|yi(N}), xi, G). Due to the non-linear
label dependency in graph neural network, we parameterize the
conditional distribution with a graph convolution network model
(GON) as pg (3: ()lyi (N)).).

Specifically, we infer relevance label distributions over V by
graph convolution network [10] with S layers. As mentioned before,
there are two subsets of nodes in G for each case c;: certain nodes C;
and uncertain nodes U;. We use the ground truth label distribution
per node in C; and the predicted label distribution from gy per node

987

SIGIR 21, July 11-15, 2021, Virtual Event, Canada

in U; for initialization as Eq.(14).

ZJjECi

() = {[1 VDO <G 1)
j i

90(Fi()xi, G)

For s-th layer, graph convolution layer-wise propagation is per-
formed by Eq.(15). In other words, we use local label dependency
to estimate the current node label with its surrounding node labels
at each propagation step. For better convergence, self-loop is added
to G and its adjacency matrix A is symmetrically normalized based
on its degree matrix D. W and by are parameters. Through S lay-
ers, we obtain the predicted distribution as Eq.(16) for each node
vj € V, Nj is denoted as v;’s neighbor node indices.

¥; = ReLU (D™ AD™3Y;7'W + b | (15)

Py Fi(NIYi(N).G) = Y5 () (16)

To optimize the parameters ¢ = {Wg, b;}f:1 of this classifier,
we minimize the log-likelihood function of label distributions of
all nodes. It is worth noting that there exist nodes whose labels
are uncertain, i.e. U; for case c;. For those uncertain nodes v; €
Ui, we use labels predicted by current gy as their ground truths
yi(j) = argmax{qg(¥i(j)|xi, G)}. Thus the optimization objective
function L,(7, ¢) is defined as the cross entropy between ground
truth and predicted label distribution in Eq.(17).

La(T.9) ==)" > By [logpy ilyiN).6)] - (17)

i=1 j=1

Algorithm 1: Optimization Algorithm

Input: Training set 7~ and Consistency graph G
Output: model parameters 6 and ¢

% pretraining;
0'=arg maxg L:(7,0) in Eq.(12);

t=1;
while convergence criteria is not achieved do
% M-step;

forie€ [1.n],j € U; do
Vi(j) = argmaxge (0,1} {qo (§:(J) = k|xi, G)} as
Eq.(11);
yi(j) =¥i(j)
end
¢' = argmaxy Lao(7, $) as Eq.(17);
% E-step;
foriec [1.n],j € U; do
| compute py: (i(j)lyi(N;), G) as Eq.(16);
end
0 =arg maxy L (7, 0) + AL, (T, 0)as Eq.(12) and (13);
t++;
end

Session 4D: Legal IR

4.4 Optimization

Directly optimizing the log likelihood function log py (yilxi. G)
in Eq.(3) is hard to obtain model parameter ¢. So we optimize the
evidence lower bound (ELBO) of log p (yi|xi, G) by minimizing the
KL divergence between the variational distribution gg and target
distribution py over uncertain labels. This can be optimized by
variational EM method [17].

In light of GMNN [19], the KL divergence can be optimized by
alternating the following variational E-step and M-step shown in
Alg. 1. At E-step, GCN with parameter ¢ is used to estimate the
target label distribution p and parameter 6 from neural encoder
module is learned through optimize the cross entropy between the
ground truth label distribution and the predicted label distribution
qg- Here the ground truth label distribution over uncertain data U;
is predicted with current p.

At M-step, our proposed masked transformer blocks with param-
eter 0 is used to infer the label distribution as gg. Most parameters
in @ is for node representation learning, so we refer this module
as node encoder. Parameter ¢ is optimized by the cross entropy
between the ground truth label distribution, which is estimated
with current gg over U; or ground truth distribution over C;, and
predicted label distribution py. We use transformer as backbone
for node representation learning due to its superior ability in nat-
ural language understanding and long range dependency, while
GMNN [19] adopts GNN as neural encoder.

4.5 Self-Consistency Evaluation

In terms of label dependency, the legal judgment results are framed
as a graph. As mentioned before, the ground truth consistency
graph for each case c; is denoted as G; defined in Def. 3.1, which
is a subgraph of G. Meanwhile, the predicted consistency graph
for each case ¢; can be derived as from predicted results y; follows:
Gi = (Vi i), Vi = {orlyi(k) = Lk = 1,...,m}, E; = {(vj,0p) €
8|Uj,vk € ‘71,] <my <km; <j<mp+my <k}

(a) G; with red edges

(b) G; with yellow edges

Figure 4: Comparison between ground truth consistency
graph G; (red edges) and predicted consistency graph G; (yel-
low edges) with the background graph G (black edges).

Fig. 4 shows the intersection between ground truth consistency
graph G; and its corresponding predicted one G; for case ¢;. It
is worth noting that only one relevant charge node predicted as
“Irrelevant” leads to two false edges. Though these two false edges
are logically consistency in G, but they are unrelated to the current
case ¢;. We suppose an edge to be consistent assuming two end
nodes are relevant. In this sense, self consistency measure needs to
be more rigorous.

988

SIGIR 21, July 11-15, 2021, Virtual Event, Canada

Traditional classification evaluation measures, like precision,
recall and F1, only focus on the node set intersection between Gi
and G;. Based on the consistency graph Def. 3.1, node labels are
used for classification accuracy performance evaluation, and edges
between nodes reflect the consistency of classification results. A
classifier is self-consistent if all nodes and edges between relevant
nodes are classified accurately. To measure the self-consistency of
a model, we estimate the Precision, Recall and Accuracy based on
the edge set intersection between G; and G; for case c¢; as shown
in Tab. 1. F1 measure can be derived from edge precision and recall.
According to measures in Tab. 1, the node precision is 2/3, but
edge precision is only 1/3 in Fig. 4. We utilize these measures to
evaluate self-consistency of our model on a benchmark dataset in
the following section.

Table 1: Self Consistency Evaluation Measure for Classifier

Class Acc. (Node) Self-Consistency (edge)
- Vin¥;| [Ein&;]|
Precision Vil i
Vin;| [Ein&;]|
Recall Vi =
WVinVi[H(V-V)O(V=Vi)| | [Ein&;|+(E-E;)N(E-E;)]|
Accuracy]]

5 EXPERIMENTS

To investigate the effectiveness and logical consistency of our pro-
posed R-former, we conduct comprehensive experiments on two
benchmark legal judgment prediction datasets.

5.1 Experimental Setting

Dataset. We use publicly available Chinese Al and Law challenge
(CAIL2018) [28]: CAIL-small (the exercise stage dataset) and CAIL-
big (the first stage dataset) to evaluate our method. Each sample
in the data set includes a text description of the legal case and
applicable laws, charges, and terms of penalty. Different data pre-
processing methods are adopted in existing studies, which leads
to different results. Up to the submitting deadline, LADAN is the
latest LJP method as we know. To make performances from differ-
ent methods comparable, we follow the data preprocessing pipeline
of state-of-the-art method LADAN [29], which reproduces most
state-of-the-art LJP methods with this pipeline. (1) It first filters out
meaningless samples, whose legal case description has less than
ten words, and complex samples with multiple relevant articles
and charges. (2) It then excludes law articles and charges with less
than 100 corresponding case samples. (3) It divides the terms of
penalty into non-overlapping intervals. The detailed statistics of
preprocessed datasets are shown in Tab. 2.

Table 2: Summary of datasets

Dataset CAIL-small CAIL-big
#Training Set Cases 101,619 1,587,979
#Test Set Cases 26,749 185,120
#Law Articles 103 118
#Charges 119 130
#Term of Penalty 11 11

Session 4D: Legal IR

Evaluation Metrics. Because both CAIL-small and CAIL-big
are imbalanced datasets, we mainly use macro-F1 (F1) to compare
with other methods. We also selected three more metrics that are
widely used for multi-classification tasks, including accuracy (Acc.),
macro-precision (MP), and macro-recall (MR). All these measures
are evaluated at node level. To evaluate the self-consistency of LJP
models, we extend these measures to the edge level as Tab. 1 and
evaluate self-consistency performance on CAIL-small.

Baseline Methods Due to the complex structure of judgment
results, existing state-of-the-art methods include the following
three kinds: (1)Task dependency methods: TOPJUDGE [34] and
MPBFN-WCA [30]. (2)Label dependency methods: Few-Shot [7]
and LADAN [29]. (3)No dependency methods: HARNN [31] and
FLA [14]. For the LSTM-based baseline model, we set the maximum
sentence length to 100 words and the maximum document length
to 15 sentences. For HARNN, FLA, Few-Shot and LADAN, we re-
produce performance results with the same multi-task framework,
and select the best parameter setting according to ranges from their
original papers. For TOPJUDGE and MPBFN-WCA, we list their
performance results reported in LADAN [29] with the same data
preprocessing pipeline as our method.

Table 3: Optimizer Parameter Setting

Pretrain & Opt. O(E-step) Opt. $(M-step)

#Epochs 10 3 30
Optimizer Adam Adam Adam
Learning rate 107° 1076 1072
batch size 4 4 128

Implementation Details. The distillation block of node en-
coder module with parameter 0 is composed of L = 3 masked
transformer layers. Graph convolution network is composed of
S = 2 layers for node classifier module with parameter ¢. We opti-
mize 6 for node encoder and ¢ for node classification alternatively
in a variational EM framework. Both are optimized with Adam,
whose parameters are set as Tab. 3. Initialized with pre-trained
BERT-Base-Chinese model 2, 6 is pretrained in Alg. 1. At each
M-step, the optimal setting of parameter ¢ of graph convolution
network for node classification is chosen as one with the smallest
loss on the validation set. At E-step, the optimal 0 is set to values
from the epoch with the smallest loss on the validation set. The
trade-off parameter A in 6’s loss function is set to 0.1. After three
iterations of EM, the performance is not longer improved on the
validation set in E-step. Then we end the EM loop. We show the
prediction performance by gg on test set. All models are trained on
one GTX1080Ti.

5.2 Classification Accuracy Analysis

Our proposed method R-former performs the best among all the
methods in Tab. 4 on CAIL-small and CAIL-big. Compared with the
best baseline LADAN, R-former’s F1 improvement on CAIL-Small
is 4.8%, and 5.2% and 8.7% for article, charge and term prediction
task separately. Compared with LADAN, R-former’s F1 improve-
ment on CAIL-big is 6.6%, and 6.6% and 8.8% for article, charge and

Zhttps://github.com/google-research/bert

989

SIGIR 21, July 11-15, 2021, Virtual Event, Canada

term prediction task separately. The superiority of LADAN to other
baselines mainly lies in discriminative representation learning for
confusing charges and articles, which is a kind of label dependency.
This kind of label relations are solved by R-former’s distinction
distillation block for discriminative node representations. Besides,
R-former introduces all other kinds of label dependencies into node
encoder and classification modules, such as logical entailment be-
tween articles and terms.

More coarse than label dependency, task dependency is used
to model the prediction order of different tasks by simulating the
decision process of law professionals. This task dependency seems
to have no obviously positive effect on accuracy improvement
by comparing TopJUDGE and MPBFN-WCA with other methods
in Tab. 4. Whether this predefined prediction order is reasonable
remains a question for machine learning methods. Moreover, this
prediction order easily leads to cascading errors due to unreliable
result dependency on other tasks. Different from this cascaded
prediction method, label propagation for optimizing R-former is
mainly dependent on neighbor’s ground truth label distributions.

Label dependency models, i.e. Few-shot and LADAN, for confus-
ing labels show better performances than no dependency models,
i.e. HARNN and FLA. Few-shot and LADAN’s F1 performances are
at least 1% higher than HARNN and FLA’s for article prediction
task On CAIL-small, and at least 2% higher than HARNN and FLA’s
for both article and charge prediction tasks on CAIL-big. In other
scenarios, both kinds of methods are even. The reason lies in that
confusing labels of Few-shot and LADAN are mainly from article
and charge prediction tasks. Such label dependency models only ob-
tain discriminative representations for articles and charges. In this
sense, confusing label relations plays a positive role in classification
accuracy performance improvement.

Compared with task dependency models mentioned above, Few-
Shot and LADAN’s F1 performance for article prediction is at least
1% and 3% higher on CAIL-small and CAIL-big respectively in Tab. 4.
The performance improvement suggests that label dependency is
directly related to classification results, though confusing label rela-
tions only directly constrain representation learning stage instead
of the prediction stage. In addition to label dependency from a task,
R-former also focuses on label dependency among different tasks.

The incorporation of label dependency among different tasks
to representation learning stage may contribute to R-former’s per-
formance improvement compared with the best state-of-the-art
baseline LADAN. Such label dependency among different tasks
are also taken into account in R-former’s prediction stage. So it
is uncertain of which component of R-former plays a major role
in the performance improvement, which will be explored in the
following subsection.

5.3 Ablation Experiments

Node classifier module, consistency distillation block and distinc-
tion distillation block are three major components of R-former,
denoted as py, M¢ and My separately. We show the performance
difference between R-former without each component and R-former
in Tab. 5. Three components play different roles in performance
improvement in terms of different evaluation measures as shown
in Tab. 5.

Session 4D: Legal IR SIGIR 21, July 11-15, 2021, Virtual Event, Canada

Table 4: Judgment prediction results on two benchmark datasets. ¥ and } means methods taking task and label dependency
respectively. HARNN and FLA are pure text classification and matching models without either dependency respectively.
means results reported in [29].

(a) CAIL-small

Law Articles Charges Term of Penalty
Acc. MP MR F1 Acc. MP MR F1 Acc. MP MR F1
HARNN 79.79 7526 76.79 7490 | 83.80 82.44 8278 82.12 | 36.17 34.66 3126 31.40
FLA 77.74 7532 7436 7293 | 80.90 79.25 77.61 7694 | 36.48 3094 2840 28.00
TOPJUDGE* 79.88 79.77 73.67 73.60 | 82.10 83.60 7842 79.05 | 36.29 3473 3273 2943
MPBEN-WCAfx* | 79.12 76.30 76.02 74.78 | 82.14 82.28 80.72 80.72 | 36.02 31.94 28.60 29.85
Few-Shot} 79.30 77.80 77.59 76.09 | 83.65 80.84 82.01 81.55 | 36.52 35.07 26.88 27.14
LADAN 81.20 78.24 7738 76.47 | 85.07 83.42 8252 82.74 | 3829 36.16 3249 32.65
R-formers 84.48 82.20 82.67 81.28 | 89.13 88.43 88.00 87.94 | 43.77 4230 40.94 41.34
(b) CAIL-big
Law Articles Charges Term of Penalty
Acc. MP MR F1 Acc. MP MR F1 Acc. MP MR F1
HARNN 95.63 81.48 7457 77.13 | 95,58 8559 79.55 81.88 | 57.38 43.50 40.79 42.00
FLA 93.23 7278 6430 6656 | 92.76 7635 68.48 70.74 | 57.63 4893 4500 46.54
TOPJUDGE* 9585 84.84 7453 7750 | 95.78 86.46 7851 81.33 | 57.34 4732 4277 44.05
MPBEN-WCAfx* | 96.06 85.25 74.82 7836 | 9598 89.16 79.73 83.20 58.14 4586 39.07 41.39
Few-Shot} 96.12 8543 80.07 81.49 | 96.04 8830 80.46 83.88 57.84 47.27 4255 43.44
LADAN 96.57 86.22 80.78 8236 | 96.45 8851 8373 8535 | 59.66 51.78 4534 46.93
R-formeri 97.87 90.31 87.15 88.93 | 97.93 9343 91.57 9194 | 64.71 57.60 54.38 55.73
Table 5: Ablation study on CAIL-small.
Law Articles Charges Term of Penalty
Acc. MP MR F1 Acc. MP MR F1 Acc. MP MR F1
R-former 84.48 8220 82.67 81.28 | 89.13 88.43 88.00 87.94 | 43.77 4230 40.94 4134
- Py +0.01 -039 -083 -0.69 | -1.08 -1.18 -1.05 -1.3 +0.13 -1.46 -1.38 -2.57
- Mc -0.8 -1.38 -091 -1.23 | -1.25 -1.37 -041 -1.05 0.25 -1.14 -2.42 -2.5
-Mg -0.45 1.07 -1.9 -0.7 -0.61 -1.03 -1.73 -1.66 | -3.26 -3.01 -245 -4.77
- M.-M4+LADAN -1.85 -3.67 -336 -393 | -332 -4.89 -4.08 -4.18 | -4.06 -447 -6.43 -6.88
LADAN -3.28 -396 -446 -481 | -4.06 -5.01 -548 -5.2 -5.48 -6.14 -8.45 -8.69
vanilla Transformer | -1.94 -0.18 -122 -147 | -142 -0.13 -1.25 -094 | -346 -277 -574 -598

The largest recall decrement is achieved by removing M; among
all three tasks in Tab. 4. In other words, the recall improvement
is mainly owing to M. Distinction distillation block derives sim-
ilar node representations of a task through a transformer layer
masked with My and subtracts such derived similar representa-
tions from original representations. This helps learn discriminative
node representations within a task, which means nodes from a
task are scattered more uniformly within the same area. This re-
laxes the decision boundary of relevant nodes, leading to more
false positive nodes. Meanwhile, the number of true positive and
negative nodes increases because of the accuracy improvement,
which means higher recall performance.

The largest precision decrement is achieved by removing M, for
article and charge prediction tasks in Tab. 4. In other words, the
precision improvement is mainly due to M. Consistency distillation
block M. employs a tripartite consistency graph G among different
tasks to ensure neighbor node representations as near as possible.
The direct result of similar representations is to tighten the decision

990

boundary of relevant nodes, which leads to less false positive nodes.
Thus higher precision is achieved.

Distinction distillation block My and consistency distillation
block M, are complementary to the performance improvement in
Tab. 5. M; explores more possible relevant nodes by relaxing de-
cision boundary within a task while M. exploits label constraints
among different task to remove possible irrelevant nodes by tight-
ening the decision boundary among different tasks. This coinsides
with two complementary designed masking matrices M; and My
in node encoder module like Fig. 3.

Tab. 5 suggests that py plays an essential role in performance im-
provement. Compared with M for recall improvement and M, for
precision improvement, py shows stable F1 improvement, which
is a trade-off measure between precision and recall. py aligns clas-
sification results among different tasks through non-linear label
propagation model, and makes neighbor node classification results
consistent. This adjustment of classification results is to find a
trade-off boundary to satisfy as many as possible label relations.

Session 4D: Legal IR

We do ablation study by replacing gqg with LADAN, denoted
as -M¢-My+LADAN in Tab. 5. Performance differences between it
and R-former in Tab. 5 suggest node encoder in R-former is more
suitable for this framework than LADAN. Compared with LADAN,
its performance improvement shows it is a positive example of
this framework with GCN as node classifier and any model as
node encoder module. Performance differences in Tab. 5 between
vanilla transformer and R-former also indicate the effectiveness of
R-former without vanilla transformer.

5.4 Case Study

As mentioned before, consistency distillation block makes node
representations from different tasks close and consistent with G,
while distinction distillation block learns distinguishable represen-
tations for nodes within a task. To describe this insight intuitively,
we choose a specific case ¢; with Article 234, Charge intentional
injury, Term 7 as ground truth labels, and its node representations
for G is shown in Fig. 5 by t-sne [15] dimension reduction.

For node encoder with only M., it emphasizes the similarity
between neighbor nodes to keep consistent with G, and nodes with
dark colors from different tasks are closer in Fig. 5(a). Another obvi-
ous observation is that nodes are prominently clustered according
to tasks. Nodes within some tasks are too close to be distinguished,
such as article (red) and term prediction (green) tasks. Thus the
discriminative representation challenge is left unsolved.

R n
2l

(a) Encoder with Only M. (b) Encoder with Only M; (c) Encoder with both

Figure 5: Case-aware Node Representations Learned from
Node Encoder with Different Masking Matrices. Different
colors means different tasks: red, green, blue are correspond-
ing to article, term and charge prediction tasks. The ground
truth labels are labeled with pentagrams. The triangle com-
posed of three ground truth labels is denoted as G;. The dark
green and blue colors represent nodes related to the red pen-
tagram in global consistency graph G.

For node encoder with only My, it aims to learn discriminative
representations of a task and nodes of the same color are scattered
uniformly within an area in Fig. 5(b). This is in accordance with our
insight. However, most dark nodes are not close enough compared
with those in Fig. 5(a), which are inconsistent with G. All dark
pentagram are near to each other, which is consistent with G;. This
local consistency is partly achieved by node classifier. In all, we
need the help of M, to achieve the global consistency.

For node encoder with both M and My, it is to learn node repre-
sentations consistent across tasks and discriminative within a task.
Fig. 5(c) shows nodes with different colors are well separated and
nodes of the same color are discriminative within a cluster. Such

991

SIGIR 21, July 11-15, 2021, Virtual Event, Canada

representations help achieve better classification accuracy perfor-
mance. We checked the red nodes around the red pentagram, there
are 15 related articles out of 26 articles for this intentional injury
case. This shows that our model has the ability to inductively learn
similar laws. In this sense, consistent representations are obtained
with the help of both masking matrices. Moreover, we evaluate the
self-consistency of a classifier with our proposed measure to verify
it quantitatively in the following subsection.

5.5 Classification Consistency Analysis

Node encoder module with global consistency graph G as masking
matrix is to learn consistent representations, which is qualitatively
verified for a specific case in the above subsection. Node classifier
module adopts graph convolution network for label propagation
to make sure of local consistency of classification results, which
will be quantitatively verified here. We compare R-former with
LADAN and vanilla transformer as baselines methods in terms of
self-consistency measures in Tab. 1 on CAIL. All the values listed
in Tab. 6 are computed over all tasks.

Table 6: Self-consistency measures comparison on CAIL

small big
Edge Node Edge Node
Acc. F1 Acc. F1 Acc. F1 Acc. F1
LADAN | 48.43 | 65.26 | 67.82 | 76.72 | 72.57 | 84.16 | 83.87 | 85.11
BERT 50.75 | 67.33 | 70.18 | 81.07 | 74.05 | 85.09 | 86.17 | 87.45
R-former | 54.26 | 70.35 | 72.46 | 82.8 | 75.94 | 86.32 | 86.84 | 88.53

Tab. 6 suggests there are fewer conflicting results among differ-
ent kinds of class labels predicted by R-former. For classification
accuracy performance, comparison results in Tab. 6 among different
methods listed in terms of node level Accuracy and F1 are in accor-
dance with comparison results in Tab. 4. Consistency performance
comparison results among different methods agree with accuracy
performance comparison results, which indicates these consistency
measures are reasonable. However, consistency performances are
lower than accuracy performances for each corresponding method
in Tab. 6. This agrees with our definition in Tab. 1.

6 CONCLUSION

To tackle the consistency and discriminative representation chal-
lenges, we formalize the LJP task as a node classification problem
over the derive global consistency graph from training data. Node
representations consistent across tasks and discriminative within
a task are learned through transformers masked with a tripartite
graph and a task cluster graph respectively. Node classifier module
predicts label distributions based on neighborhood label depen-
dency in consistency graph through graph convolution network.
Two modules are alternatively trained with a variational EM frame-
work. Experimental results on benchmark datasets show the effec-
tiveness and the essential role of each component. Self-consistency
measure will be explored next.

ACKNOWLEDGMENTS

This research work was funded by the National Natural Science
Foundation of China under Grant No.62072447.

Session 4D: Legal IR

REFERENCES

[1] Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020. Longformer: The long-

[2

[11

[12

—

=

[14]

[15

[16

]

document transformer. arXiv preprint arXiv:2004.05150 (2020).

Kyunghyun Cho, Bart van Merrienboer, Caglar Giilgehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase
Representations using RNN Encoder-Decoder for Statistical Machine Translation.
In EMNLP.

Hanjun Dai, Bo Dai, and Le Song. 2016. Discriminative Embeddings of Latent
Variable Models for Structured Data. In Proceedings of The 33rd International Con-
ference on Machine Learning (Proceedings of Machine Learning Research, Vol. 48),
Maria Florina Balcan and Kilian Q. Weinberger (Eds.). PMLR, New York, New
York, USA, 2702-2711.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan
Salakhutdinov. 2019. Transformer-xI: Attentive language models beyond a fixed-
length context. arXiv preprint arXiv:1901.02860 (2019).

William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive Representation
Learning on Large Graphs. In Proceedings of the 31st International Conference on
Neural Information Processing Systems (Long Beach, California, USA) (NIPS’17).
Curran Associates Inc., 1025-1035.

Conggqing He, Li Peng, Yuquan Le, Jiawei He, and Xiangyu Zhu. 2019. SECaps: A
Sequence Enhanced Capsule Model for Charge Prediction. In Artificial Neural
Networks and Machine Learning — ICANN 2019: Text and Time Series, Igor V. Tetko,
Véra Kurkova, Pavel Karpov, and Fabian Theis (Eds.). Springer International
Publishing, Cham, 227-239.

Zikun Hu, Xiang Li, Cunchao Tu, Zhiyuan Liu, and Maosong Sun. 2018. Few-shot
charge prediction with discriminative legal attributes. In Proceedings of the 27th
International Conference on Computational Linguistics. 487-498.

Hassan Khosravi and Bahareh Bina. 2010. A survey on statistical relational
learning. In Canadian conference on artificial intelligence. Springer, 256-268.
Thomas N. Kipf and Max Welling. 2016. Semi-Supervised Classification with
Graph Convolutional Networks. 5th International Conference on Learning Repre-
sentations (2016).

Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net. https://openreview.net/forum?id=SJU4ayYgl
Daphne Koller, Nir Friedman, Sao DZzeroski, Charles Sutton, Andrew McCallum,
Avi Pfeffer, Pieter Abbeel, Ming-Fai Wong, Chris Meek, Jennifer Neville, et al.
2007. Introduction to statistical relational learning. MIT press.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S. Zemel. 2016. Gated
Graph Sequence Neural Networks. In 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings, Yoshua Bengio and Yann LeCun (Eds.). http://arxiv.org/abs/1511.
05493

Chao-Lin Liu and Chwen-Dar Hsieh. 2006. Exploring Phrase-Based Classifica-
tion of Judicial Documents for Criminal Charges in Chinese. In Foundations of
Intelligent Systems, Floriana Esposito, Zbigniew W. Ra$, Donato Malerba, and
Giovanni Semeraro (Eds.). Springer Berlin Heidelberg, 681-690.

Bingfeng Luo, Yansong Feng, Jianbo Xu, Xiang Zhang, and Dongyan Zhao. 2017.
Learning to Predict Charges for Criminal Cases with Legal Basis. In Proceedings of
the 2017 Conference on Empirical Methods in Natural Language Processing, EMINLP
2017, Copenhagen, Denmark, September 9-11, 2017, Martha Palmer, Rebecca Hwa,
and Sebastian Riedel (Eds.). Association for Computational Linguistics, 2727-2736.
https://doi.org/10.18653/v1/d17-1289

Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of machine learning research 9, Nov (2008), 2579-2605.

Giuseppe Marra and Ondiej Kuzelka. 2019. Neural markov logic networks. arXiv
preprint arXiv:1905.13462 (2019).

Radford M Neal and Geoffrey E Hinton. 1998. A view of the EM algorithm that
justifies incremental, sparse, and other variants. In Learning in graphical models.
Springer, 355-368.

992

(18

[19]

[20

[21

[22

[25

[26

[27

[29

[30

[31

[32

[33

SIGIR 21, July 11-15, 2021, Virtual Event, Canada

Manfred Opper and David Saad. 2001. Advanced mean field methods: Theory and
practice. MIT press.

Meng Qu, Yoshua Bengio, and Jian Tang. 2019. Gmnn: Graph markov neural
networks. In International conference on machine learning. PMLR, 5241-5250.
Matthew Richardson and Pedro Domingos. 2006. Markov logic networks. Machine
learning 62, 1-2 (2006), 107-136.

Yatian Shen, Jun Sun, Xiaopeng Li, Lei Zhang, Yan Li, and Xiajiong Shen. 2018.
Legal Article-Aware End-To-End Memory Network for Charge Prediction (CSAE
’18). Association for Computing Machinery, New York, NY, USA, Article 92,
5 pages.

Ben Taskar, Pieter Abbeel, Ming-Fai Wong, and Daphne Koller. 2007. Relational
markov networks. Introduction to statistical relational learning (2007), 175-200.
Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2018. Graph Attention Networks. In 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April

30 - May 3, 2018, Conference Track Proceedings.
Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Lio, and Yoshua Bengio. 2018. Graph Attention Networks. In 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30
- May 3, 2018, Conference Track Proceedings. OpenReview.net. https://openreview.
net/forum?id=rJXMpikCZ

Hanna M Wallach. 2004. Conditional random fields: An introduction. Technical
Reports (CIS) (2004), 22.

Pengfei Wang, Yu Fan, Shuzi Niu, Ze Yang, Yongfeng Zhang, and Jiafeng Guo. 2019.
Hierarchical Matching Network for Crime Classification (SIGIR’19). Association
for Computing Machinery, New York, NY, USA, 325-334.

Pengfei Wang, Ze Yang, Shuzi Niu, Yongfeng Zhang, Lei Zhang, and ShaoZhang
Niu. 2018. Modeling Dynamic Pairwise Attention for Crime Classification over
Legal Articles (SIGIR ’18). Association for Computing Machinery, 485-494.
Chaojun Xiao, Haoxi Zhong, Zhipeng Guo, Cunchao Tu, Zhiyuan Liu, Maosong
Sun, Yansong Feng, Xianpei Han, Zhen Hu, Heng Wang, et al. 2018. Cail2018: A
large-scale legal dataset for judgment prediction. arXiv preprint arXiv:1807.02478
(2018).

Nuo Xu, Pinghui Wang, Long Chen, Li Pan, Xiaoyan Wang, and Junzhou Zhao.
2020. Distinguish Confusing Law Articles for Legal Judgment Prediction. In
Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics. 3086-3095. https://doi.org/10.18653/v1/2020.acl-main.280
Wenmian Yang, Weijia Jia, Xiaojie Zhou, and Yutao Luo. 2019. Legal Judgment
Prediction via Multi-Perspective Bi-Feedback Network. In Proceedings of the
Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019,
Macao, China, August 10-16, 2019, Sarit Kraus (Ed.). ijcai.org, 4085-4091. https:
//doi.org/10.24963/ijcai.2019/567

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard
Hovy. 2016. Hierarchical attention networks for document classification. In
Proceedings of the 2016 conference of the North American chapter of the association
for computational linguistics: human language technologies. 1480—-1489.
Jonathan S Yedidia, William T Freeman, and Yair Weiss. 2003. Understanding
belief propagation and its generalizations. Exploring artificial intelligence in the
new millennium 8 (2003), 236-239.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris
Alberti, Santiago Ontafién, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang,
and Amr Ahmed. 2020. Big Bird: Transformers for Longer Sequences. In Ad-
vances in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual,
Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (Eds.). https://proceedings.neurips.cc/paper/2020/hash/
c8512d142a2d849725f31a9a7a361ab9- Abstract.html

Haoxi Zhong, Zhipeng Guo, Cunchao Tu, Chaojun Xiao, Zhiyuan Liu, and
Maosong Sun. 2018. Legal judgment prediction via topological learning. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing. 3540-3549.

https://openreview.net/forum?id=SJU4ayYgl
http://arxiv.org/abs/1511.05493
http://arxiv.org/abs/1511.05493
https://doi.org/10.18653/v1/d17-1289
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://doi.org/10.18653/v1/2020.acl-main.280
https://doi.org/10.24963/ijcai.2019/567
https://doi.org/10.24963/ijcai.2019/567
https://proceedings.neurips.cc/paper/2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html

	Abstract
	1 Introduction
	2 Related Work
	2.1 Legal Judgment Prediction Approaches
	2.2 Other Related Techniques

	3 Problem Formalization
	4 R-former
	4.1 Architecture
	4.2 Node Encoder Module
	4.3 Node Classifier Module
	4.4 Optimization
	4.5 Self-Consistency Evaluation

	5 Experiments
	5.1 Experimental Setting
	5.2 Classification Accuracy Analysis
	5.3 Ablation Experiments
	5.4 Case Study
	5.5 Classification Consistency Analysis

	6 Conclusion
	Acknowledgments
	References

